<3NF>

営業

商品番号I	顧客番号C	社員番号S	販売価格 P
il	c1	sl	100
il	c2	s2	120
i2	c1	s1	200
i2	c2	s2	210
i3	c1	sl	250
i3	c2	s2	250
i4	c1	sl	150

更新不整合が発生する。

リレーションスキーマ RS={ I, C, S, P}

関数従属性集合 $F=\{\{\{I,C\}\rightarrow P\},\{C\rightarrow S\}\}$ 以下 $F=\{IC\rightarrow P,C\rightarrow S\}$

極小被覆 $M=\{IC\rightarrow P\}$, $\{C\rightarrow S\}$

関数従属性集合 F(極小被覆 M)に基づいて「営業」を分解する。

c1

c2

c1

販売={I,C,P}

i3

i3

i4

営業担当={C,S}

商品番号[顧客番号C	販売価格 P	顧客番号C	社員番号S
i l	c1	100	c1	sl
i l	c2	120	c2	s2
i 2	c1	200	更新不整合は発生しない。	
i2	c2	210		

p59 図 4.1 リレーション「営業」の分解

「販売」▶「営業担当」は「営業」になる ⇒ 無損失結合分解

「販売」,「営業担当」には関数従属性がすべて含まれている ⇒ 従属性保存分解

250

250

150

<BCNF>

RS

商品番号I	販売地域 A	販売担当者 S	販売価格 P
il	al	sl	100
il	a2	s2	100
i2	al	s1	200
i2	a2	s2	200
i3	al	s1	250
i3	a2	s2	250
i 4	a3	s3	150

リレーションスキーマ RS={ 商品番号 I, 販売地域 A, 販売担当者 S, 価格 P} 関数従属性集合 $F=M=\{IA\rightarrow S, S\rightarrow A, I\rightarrow P\}$ (極小被覆 M に等しい)

3NFへの従属性保続分解は { {I,A,S}, {A,S}, {I,P} } {A,S}は{I,A,S}の部分集合になるので、分解は{ {I,A,S}, {I,P} }でよい。

リレーションスキーマ{I,A,S,P}において、関数従属性集合よりつぎのことがわかる

- 1. 候補キーは IA および IS である。 ⇒ I, A, S それぞれは素属性
- 2. I は超キーではない。A は超キーではない。S は超キーではない。
- 3. Pは素属性ではない。

RSの分解を考える。

 $RSA=\{I,A,S\}$

RSB={	Ί.	P)
TOD I	,	,

商品番号I	販売地域 A	販売担当者S
il	al	s1
il	a2	s2
i2	al	s1
i2	a2	s2
i3	al	sl
i3	a2	s2
i4	a3	s3

商品番号Ⅰ	販売価格 P
i1	100
i2	200
i3	250
i4	150

更新不整合は発生しない。

商品番号 I は超キー ⇒ 「RSB は 3NF である。」

⇒「RSBはBCNFである。」

極小被覆 M={IA→S, S→A}

S は素属性 ⇒「RSA は 3NF である。」

IAは候補キーであるが、超キーではない

⇒「RSAはBCNFではない。」

リレーションスキーマ RS={ 商品番号 I, 販売地域 A, 販売担当者 S, 価格 P} 関数従属性集合 $F=M=\{IA\rightarrow S, S\rightarrow A, I\rightarrow P\}$ (極小被覆 M に等しい)

RSA を考慮して、RS を3つに分解する。

 $RS1=\{I,S\}$ $RS2=\{A,S\}$

 $RS3=\{I,P\}$

商品番号 [販売担当者 S	
i1	sl	
i 1	s2	
i 2	sl	
i 2	s2	極人
i3	s1	販売
i3	s2	///
i4	s3	

$KSZ=\{A, S\}$				
販売地域 A	販売担当者S			
al	s1			
a2	s2			
a3	s3			
極小被覆 { S→A }				

商品番号I 販売価格 P i 1 100 i2 200 250 i3 150 i4

極小被覆 { I→P }

売担当者Sは超キー

⇒「RS2はBCNFである。」

商品番号」は超キー

⇒「RS3はBCNFである。」

極小被覆 { }

商品番号 I と販売担当者 S の間 に関数従属性はない

⇒「RS1はBCNFである。」

RS1▶RS2▶RS3はRSを含む ⇒ 無損失結合分解

RS1, RS2, RS3 に関数従属性{IA→S}が含まれない ⇒ 従属性保存分解ではない

まとめ

- 1. リレーション RS は 1NF であるが、3NF ではない。 RS は更新不整合が発生する。
- 2. リレーション RS の分解 RSA, RSB は 3NF である。RSA は更新不整合が発生する。
- 3. リレーション RS の分解 RS1, RS2, RS3 は BCNF である。 RS2, RS3 には更新不整合が発生しない。

〈多値従属性 MVD〉

プロジェクト

プロジェクト番号P	社員番号E	ミーティング日 M
p1	e1	月曜日
p1	e2	月曜日
p1	el	木曜日
p1	e2	木曜日
p2	el	月曜日
p2	e3	月曜日
p2	el	金曜日
p2	e3	金曜日

リレーションスキーマ プロジェクト={ プロジェクト番号 P, 社員番号 E, ミーティング日 M} 関数従属性集合 ない リレーション「プロジェクト」は BCNF である。

プロジェクトのメンバーが変更になった ⇒ 更新不整合が発生する。

ミーティング日が変更になった。

⇒ 更新不整合が発生する。

新しいプロジェクトのメンバーは決まった。ミーティング日は未定 ⇒ 更新不整合が発生する。

「プロジェクト」を分割するとしたら、このようなものになるだろう。

 $RS1 = \{P, E\}$

 $RS2=\{P.M\}$

K01-(1,L)		K02-(1, M)		
プロジェクト番号P	社員番号E	プロジェクト番号P	ミーティング日 M	
p1	el	p1	月曜日	
p1	e2	p1	木曜日	
p2	el	p2	月曜日	
p2	e3	p2	金曜日	

多值従属性 P>>E

$$(t[X]=u[X]=v[X]=w[X]) --- (1) \land (t[Y]=v[Y]) --- (2) \land (u[Y]=w[Y]) --- (3) \land (t[RS-XY]=w[RS-XY]) --- (4) \land (u[RS-XY]=v[RS-XY]) --- (5)$$

	プロジェクト番号 P X	社員番号 E Y	ミーティング日 M RS-XY
t	(1)t[X] p1	(2)t[Y] e1	(4)t[RS-XY] 月曜日
W	(1)w[X] p1	(3)w[Y] e2	(4)w[RS-XY] 月曜日
V	(1)v[X] p1	(2)v[Y] e1	(5)v[RS-XY] 木曜日
u	(1)u[X] p1	(3)u[Y] e2	(5)u[RS-XY] 木曜日
	p2	el	月曜日
	p2	e3	月曜日
	p2	el	金曜日
	p2	e3	金曜日

	プロジェクト番号 P X	社員番号 E Y	ミーティング日 M RS-XY
	pl	el	月曜日
	pl	e2	月曜日
	pl	el	木曜日
	pl	e2	木曜日
t	t[X] p2	t[Y] el	t[RS-XY] 月曜日
W	w[X] p2	w[Y] e3	w[RS-XY] 月曜日
V	v[X] p2	v[Y] e1	v[RS-XY] 金曜日
u	u[X] p2	u[Y] e3	u[RS-XY] 金曜日

X→Y が成り立つ ↔ X→RS-XY が成り立つ

P->Eであるから、P->Mである

多值従属性 P-->M

	プロジェクト番号 P X	社員番号 E RS-XY	ミーティング日 M Y
t	(1)t[X] pl	(4)t[RS-XY] e1	(2)t[Y] 月曜日
V	(1)v[X] p1	(5)v[RS-XY] e2	(2)v[Y] 月曜日
W	(1)w[X] p1	(4)w[RS-XY] e1	(3)w[Y] 木曜日
u	(1)u[X] p1	(5)u[RS-XY] e2	(3)u[Y] 木曜日
	p2	e1	月曜日
	p2	e3	月曜日
	p2	e1	金曜日
	p2	e3	金曜日

	プロジェクト番号 P X	社員番号 E RS-XY	ミーティング日 M Y
	pl	el	月曜日
	pl	e2	月曜日
	pl	el	木曜日
	pl	e2	木曜日
t	t[X] p2	t[RS-XY] el	t[Y] 月曜日
V	v[X] p2	v[RS-XY] e3	v[Y] 月曜日
W	w[X] p2	w[RS-XY] e1	w[Y] 金曜日
u	u[X] p2	u[RS-XY] e3	u[Y] 金曜日

関数従属性は多値従属性の特殊な場合と考えることができる 「関数従属性 X→Y が成立」 [⇒] 「多値従属性 X**→**Y が成り立つ」 <4NF>

多値従属性に基づいた分解

多值従属性 P >> E

多值従属性 P->M

 $RS1=\{P, E\}$

 $RS2=\{P,M\}$

プロジェクト番号P	社員番号E
p1	e1
p1	e2
p2	el
p2	e3

102 (1,11)		
プロジェクト番号P	ミーティング日 M	
p1	月曜日	
p1	木曜日	
p2	月曜日	
p2	金曜日	

P→E が成り立つときP は超キー

P→Mが成り立つときPは超キー

⇒「RS1は4NFである。」

⇒「RS2は4NFである。」

プロジェクト

プロジェクト番号P	社員番号E	ミーティング日 M		
p1	e1	月曜日		
p1	e2	月曜日		
p1	el	木曜日		
p1	e2	木曜日		
p2	e1	月曜日		
p2	e3	月曜日		
p2	el	金曜日		
p2	e3	金曜日		

P,E,M間に関数従属性はない ⇒「プロジェクトはBCNFである。」

Pは超キーではない ⇒「プロジェクトは 4NF ではない。」

まとめ

- 1. リレーション「プロジェクト」は BCNF であるが、更新不整合が発生する。
- 2. リレーション RS の分解 RS1, RS2 は 4NF である。RS1, RS2 には更新不整合が発生しない。
- 3. RS1×RS2は「プロジェクト」になる ⇒ RS1,RS2は無損失結合分解である。

〈局所多值従属性 EMVD〉

ミーティング

プロジェクト番号P	社員番号E	ミーティング日 M	ミーティング数 N
p1	el	月曜日	2
p1	e2	月曜日	1
p1	el	木曜日	1
p1	e2	木曜日	1
p2	el	月曜日	2
p2	e3	月曜日	1
p2	el	金曜日	1
p2	e3	金曜日	1

リレーションスキーマ

ミーティング={プロジェクト番号P, 社員番号E, ミーティング日M,ミーティング数N}

EM は超キーではない。⇒「ミーティングは 4NF ではない。」

ミーティングを分解する。

 $RS1 = \{P, E, M\}$

プロジェクト 番号 P	社員番号E	ミーティング 日 M
p1	e1	
p1	e2	
p1	e1	木曜日
p1	e2	木曜日

RS1 には多値従属性{P→E}がある。

RS1 は「ミーティング」の射影である。

RS1= $\pi_{P,E,M}$ ミーティング

⇒「ミーティング」には局所多値従属性がある。

 $RS2=\{E, M, N\}$

ミーティング	ミーティング
∃M	数N
月曜日	2
月曜日	1
木曜日	1
木曜日	1
月曜日	1
金曜日	1
金曜日	1
	日 M 月曜日 月曜日 木曜日 木曜日 月曜日 金曜日

関数従属性{EM→N}がある。 N は素属性ではない。 RS2 は 3NF であるが、BCNF, 4NF ではない。 R

N .				
工場番号F	部品番号 P	業者番号S		
f1	pl	sl		
f1	p2	sl		
f1	p2	s2		
f1	р3	s2		
f2	pl	sl		
f2	р3	s3		

リレーションスキーマ R={ 工場番号 F, 部品番号 P, 業者番号 S }

関数従属性,多値従属性質,局所多値従属性 なし ⇒ R は 4NF である。

ある工場が必要とする部品を決めた。業者は未定 ⇒ 更新不整合

業者 s1 との取引を止めた。工場 f1 で部品 p1 を必要とする情報が失われる ⇒ 更新不整合

R=RS1▶RS2▶RS3になる ⇒「結合従属性 JD」

 $RS1 = \pi_{EP}(R)$

$RS2 = \pi_{F,S}(R)$

 $RS3 = \pi_{P.S}(R)$

F,P\)	
工場番号F	部品番号P
f1	pl
f1	p2
f1	р3
f2	pl
f2	р3

工場番号F	業者番号S
f1	sl
fl	s2
f2	sl
f2	s3

	部品番号 P	業者番号S
	p1	sl
	p2	sl
	p2	s2
	р3	s2
•	р3	s3

F→Pが成り立つときFは超キー

⇒「RS1は4NFである。」

F→S が成り立つときFは超キー P→S が成り立つときPは超キー

⇒「RS2は4NFである。」

⇒「RS3は4NFである。」

多値従属性はない

⇒「RS1は5NFである。」

工場番号Fと部品番号Pの間に 工場番号Fと業者番号Sの間に 部品番号Pと業者番号Sの間に 多値従属性はない

⇒「RS2は5NFである。」

多値従属性はない

⇒「RS3は5NFである。」